

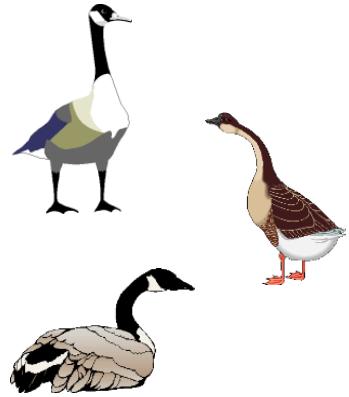
---

# CH 2 – SETS

---



**A** *bunch of bananas, a gaggle of geese* — each is an example of a **set**, referred to as an *ensemble* in French. The idea of a set is so fundamental that it doesn't even have a definition, yet sets form the foundation of all mathematics.



## □ **BASIC SET DEFINITIONS**

A **set** is a well-defined collection of objects (but what's a collection?). Well-defined means that, for instance, “all whole numbers greater than 10” is a set, but “all tall people” is not a set (it's too vague).

Consider the sets

$$A = \{1, 3, 5\} \quad B = \{1, 3, 5, 7, 10\}$$

The **elements** (or members) of set A are 1, 3, and 5, surrounded by (curly) braces. We say “3 is an element of A” and write “ $3 \in A$ ”. We can also say that “12 is not an element of A”, in which case we write “ $12 \notin A$ ”.

In the sets A and B above, notice that all the elements of A are also elements of B. In a sense, A is contained in B. We say that “A is a **subset** of B” and write “ $A \subseteq B$ ”. Can you see that B is not a subset of A? We write “ $B \not\subseteq A$ ”.

There's a very special set that contains *no* elements. It is called the **null set** (or the empty set), and is written  $\emptyset$ . Some teachers prefer to write  $\{ \}$  for the null set.

Most books use the symbol  $\mathbb{N}$  to denote the set of all **natural numbers**:

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

Also, we'll use the symbol  $\mathbb{Z}$  to represent the set of **integers**:

$$\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$

**Z** is the first letter of **Zahl**, the German word for *number*.

## Homework

1. Consider the collection of all students registered in this class. Is this a set? Why or why not?
2. Consider the collection of all students at the college with a high GPA. Is this a set? Why or why not?
3. Fill in the blanks:
  - a. 7 \_\_\_\_ { all primes }
  - b. 13 \_\_\_\_ { all even numbers }
4. Fill in the blanks:
  - a. 6 \_\_\_\_ {3, 6, 9}
  - b. {6} \_\_\_\_ {3, 6, 9}
5. a. T/F: {students in this class}  $\subseteq$  {DVC students}  
 b. T/F: {people in this class}  $\subseteq$  {DVC students}
6. T/F: {primes}  $\subseteq$  {odd natural numbers}  
 Hint: The first few primes are 2, 3, 5, 7, 11, 13, ....
7. Explain why {7, 8, 9}  $\not\subseteq$  {7, 9, 11, 13, 20}.
8. T/F:  $\{\emptyset\} = \emptyset$ . Be sure to explain your answer.
9. Which statement is true,  $\{1, 9, 21\} \subseteq \mathbb{N}$  or  $\mathbb{N} \subseteq \{1, 9, 21\}$  ?
10. Prove that  $\mathbb{N} \subseteq \mathbb{Z}$ . Now prove that  $\mathbb{Z} \not\subseteq \mathbb{N}$ .
11. Fill in the blank: If  $A \subseteq B$  and  $B \subseteq A$ , then \_\_\_\_\_.
12. T/F:  $\{1, 3\} \in \{\{a\}, \{x, y\}, \{1, 3\}\}$

Do you see that  
 $\mathbb{N} \subseteq \mathbb{Z}$  ?

## □ **IMPORTANT PROPERTIES OF SETS**

- ◆ The elements of a set may be explicitly listed, such as the set of positive even numbers:  $\{2, 4, 6, 8, \dots\}$ . The positive even numbers can also be written  $\{n \in \mathbb{N} \mid n \text{ is even}\}$ , where the vertical bar,  $\mid$ , is read “*such that*.” Some books write this with a colon instead of a vertical bar:  $\{n \in \mathbb{N} : n \text{ is even}\}$
- ◆ The order in which the elements of a set are listed doesn’t matter. For example,  $\{1, 2, 3\} = \{2, 3, 1\}$ .
- ◆ Repeated elements in a set can be thrown out without changing the set. For instance,  $\{a, b, a, c\} = \{a, b, c\}$ .
- ◆ Is every element of the set  $\{1, 2, 3\}$  also in the set  $\{1, 2, 3\}$ ? Yes, so  $\{1, 2, 3\} \subseteq \{1, 2, 3\}$ . In general, for any set  $A$ ,

$$A \subseteq A$$

- ◆ We now contend that  $\emptyset \subseteq \{1, 2, 3\}$ . This is really strange, but look at it this way: If the null set were not a subset of  $\{1, 2, 3\}$ , then there would have to be something in the null set that fails to be in  $\{1, 2, 3\}$ . But this is impossible since there’s nothing in the null set! Thus, it can not be the case that the null set is not a subset of  $\{1, 2, 3\}$ , and therefore it is a subset:  $\emptyset \subseteq \{1, 2, 3\}$ . This may be hard to fathom, so you may have to accept it on faith. Just memorize the following fact: If  $A$  is any set,

$$\emptyset \subseteq A$$

---

# Homework

---

13. List the elements of  $\{x \in \mathbb{N} \mid x \leq 5\}$ .
14. List the elements of  $\{x \in \mathbb{N} \mid 5 \leq x < 10\}$ .
15. Write the set  $\{2, 4, 6, 8, 10\}$  in the form  $\{x \in \mathbb{N} \mid x \text{ is . . .}\}$ .
16. Write the set  $\{2, 3, 5, 7, 11, 13\}$  in the form  $\{x \in \mathbb{N} \mid x \text{ is . . .}\}$ .
17. T/F:  $\{6, 7, 8, 7, 4\} = \{4, 7, 6, 8\}$ . Explain.
18. T/F:  $\{a, b, c, d, e\} = \{b, c, d, e\}$ . Explain.
19. T/F:  $\{1, 5, 9\} \subseteq \{1, 5, 9\}$
20. T/F:  $\emptyset \subseteq \emptyset$ . Explain.
21. The number of elements in a set is called its **cardinality**. For example, the cardinality of  $\{2, 4, 8, 16, 32\}$  is 5. What is the cardinality of  $\emptyset$ ? What is the cardinality of  $\{1, 3, 5, 7, \dots, 21\}$ ?
22. Let  $A$  be a set with cardinality 100. What is the cardinality of  $\{A\}$ ? [This is tricky.]
23. What is the cardinality of  $\mathbb{N}$ ? What is the cardinality of the set of even numbers? Do  $\mathbb{N}$  and the even numbers have the same cardinality?

## □ **COMBINING SETS**

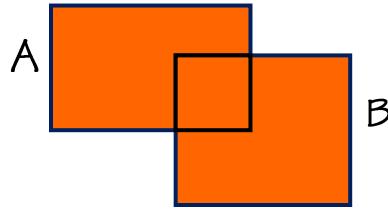
The **union** of two sets  $A$  and  $B$  is the new set obtained by lumping together all the elements that are in  $A$  or  $B$  (or both). The union of  $A$  and  $B$  is written  $\mathbf{A} \cup \mathbf{B}$ . For example,

$$\{1, 2, 7\} \cup \{2, x, \Delta\} = \{1, 2, 7, x, \Delta\}$$

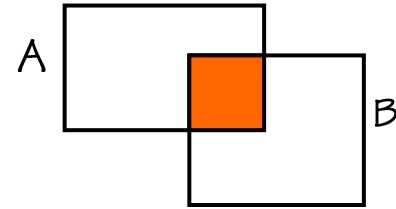
The **intersection** of sets A and B is the new set obtained by extracting just the elements in both A and B — that is, the elements that A and B have *in common*. The intersection of A and B is written  $A \cap B$ . For example,

$$\{a, b, R\} \cap \{b, c, R\} = \{b, R\}$$

Union and intersection can be displayed as *Venn diagrams*:



$A \cup B$  is shaded



$A \cap B$  is shaded

The following are the official definitions of union and intersection:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

### EXAMPLE 1:

- A.  $\{a, b, c\} \cup \{d, w, z\} = \{a, b, c, d, w, z\}$
- B.  $\{1, 3, 5, 7\} \cap \{2, 4, 6\} = \emptyset$
- C.  $\{m, n, p\} \cup \{m, n, o, p, q\} = \{m, n, o, p, q\}$
- D.  $\{7, 8, 9\} \cap \{7, 8, 9, 10\} = \{7, 8, 9\}$
- E.  $\{a, 1, 2, \pi\} \cup \emptyset = \{a, 1, 2, \pi\}$
- F.  $\{x, y, z\} \cap \emptyset = \emptyset$

---

# Homework

---

24. Sketch a Venn diagram representing the statement:  $A \subseteq B$ .

25. Use a Venn diagram to prove:  
 If  $A \subseteq B$  and  $B \subseteq C$ , then  $A \subseteq C$ .

26. Find  $\{a, b, c\} \cup \{b, d, w, z\} \cup \{a, d, w, m, z\}$ .

27. Find  $\{1, 3, 5\} \cap \{3, 5, 7\} \cap \{5, 7, 9\}$ .

28. Two sets A and B are said to be ***disjoint*** if  $A \cap B = \emptyset$ ; for example, the set of even numbers and the set of odd numbers are disjoint. Sketch a Venn diagram of two disjoint sets.

29. Find a *counterexample* to the conjecture:

$$A \cup (B \cap C) = (A \cup B) \cap C$$

Hint: Find sets A, B, and C that make the statement false.

30. Use the sets  $A = \{1, 2, 3\}$ ,  $B = \{2, 3, 7\}$ , and  $C = \{3, 7, 9\}$  to give some evidence for a *distributive property* of sets:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Does this example constitute a proof of a distributive property of sets?

## □ **FINDING ALL THE SUBSETS OF A SET**

**EXAMPLE 2:** List all the subsets of  $\{1, 2, 3\}$ .

**Solution:** Recall the Important Properties section a few pages back. There, we learned that the null set,  $\emptyset$ , is a subset of any set; thus  $\emptyset$  is one of the subsets of  $\{1, 2, 3\}$ . Also, we discussed the fact that any set is a subset of itself — thus,  $\{1, 2, 3\}$  is one of

the subsets of  $\{1, 2, 3\}$ . That's two subsets so far — essentially the “smallest” and the “largest” subsets.

Next, we'll list the subsets containing exactly one element:

$$\{1\} \quad \{2\} \quad \{3\}$$

And finally, we'll list the subsets containing exactly two elements:

$$\{1, 2\} \quad \{1, 3\} \quad \{2, 3\}$$

Remembering the null set and the entire set, we obtain a total of eight subsets:

$$\boxed{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}}$$

**EXAMPLE 3:** List all the subsets of  $\{a, b, c, d\}$ .

Solution: We'll organize the subsets in order of cardinality (the number of elements in the subset):

**0** elements:  $\emptyset$

**1** element:  $\{a\} \quad \{b\} \quad \{c\} \quad \{d\}$

**2** elements:  $\{a, b\} \quad \{a, c\} \quad \{a, d\} \quad \{b, c\} \quad \{b, d\} \quad \{c, d\}$

**3** elements:  $\{a, b, c\} \quad \{a, b, d\} \quad \{a, c, d\} \quad \{b, c, d\}$

**4** elements:  $\{a, b, c, d\}$

Count 'em all up — there should be **16 subsets** altogether.

---

## Homework

---

31. a. List all the subsets of  $\{a, b\}$ .  
b. List all the subsets of  $\{x\}$ .  
c. List all the subsets of  $\emptyset$ .
32. How many subsets does the set  $\{a, b, c, d, e, f, g, h, i, j\}$  have?
33. Suppose a set has cardinality  $n$ . How many subsets does the set have?
34. How many subsets does the set  $\{\{1\}, \{1, 2\}, \{7, 9, 10\}\}$  have?
35. A set  $X$  has 128 subsets. Find the cardinality of  $X$ .

---

## Review Problems

---

36. What's the distinction between a set and a non-set?
37. a. T/F:  $\{5\} = 5$   
b.  $A \cup A = \underline{\hspace{2cm}}$   
c.  $A \cap A = \underline{\hspace{2cm}}$
38. We know that  $\mathbb{N}$  has cardinality  $\infty$ . What is the cardinality of  $\{\mathbb{N}\}$ ?
39. T/F:  $\{1, 3\} \in \{0, 1, 2, 3, 4, 5\}$
40. Explicitly list the elements of the set  $A = \{x \in \mathbb{N} \mid x \text{ is even and } x < 7\}$ .

41. T/F: If  $A \subseteq B$  and  $C \subseteq B$ , then  $A \cup C = B$ .

42. For any set  $A$ ,

$$A \cap \emptyset = \quad \text{and } A \cup \emptyset = \quad.$$

43. If  $A = \{4, 5, 9\}$ , find a set  $B$  such that  $A \cap B = \{5, 9\}$ .

44. How many subsets does the set  $\{5, 12, 3, a, 7, x, \frac{3}{8}\}$  have?

45. a. How many subsets does  $\emptyset$  have?

b. How many subsets does  $\{\emptyset\}$  have?

46. Find the cardinality of a set which has 512 subsets.

47. T/F:  $\{5, 6\} = \{6, 5\}$

48. The set  $C$  has cardinality 99. What is the cardinality of  $\{C\}$ ?

49. T/F:  $\{1, 3\} \subseteq \{0, 1, 2, 3, 4, 5\}$

50. Explicitly list the elements of the set  $A = \{x \in \mathbb{N} \mid x \text{ is odd and } x < 10\}$ .

51. T/F: If  $A \subseteq B$  and  $B \subseteq C$ , then  $C \subseteq A$ .

52. For any set  $A$ ,

$$A \cap A = \quad \text{and } A \cup A = \quad.$$

53. If  $A = \{4, 5, 9\}$ , find a set  $B$  such that  $A \cup B = \{1, 4, 5, 9\}$ .

54. How many subsets does the set  $\{5, 12, 3, a, 7, y, z, w\}$  have?

55. a. How many subsets does  $\emptyset$  have?

b. How many subsets does  $\{\emptyset, \{\emptyset\}\}$  have?

# 10

56. Find the cardinality of a set which has 1024 subsets.
57. T/F: For any sets  $A$  and  $B$ ,  $A \cup B = A \cap B$ . Prove your answer.
58. True/False:
  - a.  $\{1\} \in \{0, 2, \{1\}, \pi\}$
  - b. If  $Y$  is any set,  $Y \subseteq Y$ .
  - c. If  $Z$  is any set,  $\emptyset \in Z$ .
  - d.  $\emptyset \subseteq \emptyset$ .
  - e.  $\{a, b, c\} \cup \{b, c, d\} = \{c\}$ .
  - f.  $\{1, 2\} \cap \{3, 9\} = \emptyset$ .
  - g. If  $A$  is any set,  $A \cup \emptyset = \emptyset$ .
  - h.  $\{1, 2\}$  and  $\{3, \pi\}$  are disjoint.
  - i. If  $B$  is any set,  $B$  and  $\emptyset$  are disjoint.
  - j. A set has 5 elements. It follows that the set has 25 subsets.
  - k. A set has 2048 subsets. It follows that the set has 11 elements.
  - l. If  $A \subseteq B$  and  $B \subseteq C$ , then  $A \subseteq C$ .
  - m. If  $A \subseteq B$ , then  $A \cup B = B$ .
  - n. If  $A \subseteq B$ , then  $A \cap B = A$ .

## □ **To $\infty$ AND BEYOND**

Let  $A$  be any set. We will denote the **cardinality** of  $A$  (the number of elements in  $A$ ) by the notation  $n(A)$ . We also define  $\mathcal{P}(A)$ , called the **power set** of  $A$ , to be the set of all subsets of  $A$ .

For example, let  $A = \{1, 5\}$ . Then

$$n(A) = 2 \text{ and } \mathcal{P}(A) = \{\emptyset, \{1\}, \{5\}, \{1, 5\}\}$$

Can you see that  $n(\mathcal{P}(A)) = 4$  ?

A. State the definition of  $\mathcal{P}(A)$  (fill in the blank):

$$\mathcal{P}(A) = \{ X \mid \text{_____} \}$$

B. If  $A$  is a set such that  $n(A) = 12$ , calculate  $n(\mathcal{P}(A))$ .

C. Suppose  $B$  is a set such that  $n(\mathcal{P}(B)) = 256$ . Calculate  $n(B)$ .

---

## Solutions

---

1. Yes; well-defined.      2. No; exactly what is a high GPA?

3.  $\in, \notin$       4.  $\in, \subseteq$       5. a. T      b. F      6. F

7. 8 is an element of the first set, but it's not an element of the second set.

8. F — one set has 1 element in it, while the other set has 0 elements in it.

9. The first      10. Every natural number is an integer, so  $\mathbb{N} \subseteq \mathbb{Z}$ . But  $-3 \in \mathbb{Z}$ , yet  $-3 \notin \mathbb{N}$ ; thus  $\mathbb{Z} \not\subseteq \mathbb{N}$ .

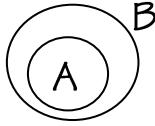
11.  $A = B$       12. T      13.  $\{1, 2, 3, 4, 5\}$       14.  $\{5, 6, 7, 8, 9\}$

15.  $\{x \in \mathbb{N} \mid x \text{ is even and } x \leq 10\}$       16.  $\{x \in \mathbb{N} \mid x \text{ is a prime number } \leq 13\}$

17. T — duplicates can be discarded, and the order doesn't matter.

18. F      19. T      20. T — the null set is a subset of every set, including itself.      21. 0; 11      22. 1

23.  $\infty; \infty$ ; What do you think?

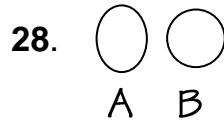
24. 

# 12

25. Draw A inside B and B inside C. Is it clear that A is inside C, and therefore that  $A \subseteq C$ ?

26.  $\{a, b, c, d, w, z, m\}$

27.  $\{5\}$



29. Let me know what sets you came up with.

30. Work out each side by doing what's in parentheses first. An example does not prove anything.

31. a.  $\{a, b\}, \{a\}, \{b\}, \emptyset$       b.  $\{x\}, \emptyset$       c.  $\emptyset$

32. 1024      33. What do you think?      34. 8      35. 7

36. A set is well-defined; it's always possible to tell whether something is in the set or not.

37. a. False      b. A      c. A      38. 1      39. False      40.  $A = \{2, 4, 6\}$

41. False      42.  $\emptyset$ ; A      43.  $B = \{5, 7, 9\}$ , for example

44. 128      45. a. 1      b. 2      46. 9

47. a. T      48. 1      49. T

50.  $A = \{1, 3, 5, 7, 9\}$       51. F      52. A; A      53.  $B = \{1\}$

54. 256      55. a. 1      b. 4      56. 10

57. False; for example, let  $A = \{1, 2\}$  and  $B = \{3\}$ . Then  $A \cup B = \{1, 2, 3\}$ , while  $A \cap B = \emptyset$ .

58. a. T      b. T      c. F      d. T      e. F      f. T      g. F      h. T  
i. T      j. F      k. T      l. T      m. T      n. T

**“Our progress as a nation can be no swifter than our progress in education.”**

– John Fitzgerald Kennedy